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SUMMARY

Two methods are described for cMculating unsteady flows over rapidly pitching air-

foils. The first method is based on an interactive scheme in which the inviscid flow is ob-

tained by a panel method. The boundary layer flow is computed by an interactive method

that makes use of the Hilbert integral to couple the solutions of the inviscid and viscous flow

equations. The second method is based on the solution of the compressible Navier-Stokes

equations. The solution of these equations is obtained with an approximately factorized

numerical algorithm, and with single block or multiple grids which enable grid embedding

to enhance the resolution at isolated flow regions. In addition, the attached flow region

can be computed by the numerical solution of compressible boundary layer equations.

Unsteady pressure distributions obtained with both methods are compared with available

experimentM data.

ABSTRACT

The present paper addresses the prediction of unsteady airfoil boundary layer flows

by two methods. These two methods are briefly described in the following section. The

first is based on the extension of the steady interactive boundary-layer method of [1] and

the second on the Navier-Stokes method of [2].
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1.1 Viscous-Inviscid Interaction Method: The interactive method for steady high

Reynolds number incompressible flows is described in [1] and [3], respectively, and makes

use of an inverse boundary-layer method coupled to a panel method with an interactive

formula suggested by VeldmarL [4]. The extension of this method to unsteady incompress-

ible flows, again makes use of a panel method [5], which is similar to that of Hess and

Smith [6]. This method utilizes the procedure of Basu and Hancock [7] to model the wake.

The wake is represented by a series of free vortices shed from the trailing edge in response

to incidence changes so that the total vortlcity in the field is conserved. The airfoil's

lift response then is obtained by subdividing the incidence history into sufficiently small

time steps and computing the source and vorticity distributions for each time step. The

unsteady interactive method is described in full detail in Refs. 5 and 8.

The unsteady boundary-layer equations are expressed in terms of an eddy viscosity,

era, so that continuity and momentum equations

Ou Ov
+ _ = 0 (1)0-_ uy

Ou Ou Ou OUr

a_ + u_ + v-gy_ at
u OU_ 0 Ou+ 0_ + _[(v + _m)_] (2)

are solved subject to the boundary conditions

y = 0, u -- v = 0; y _ _, u --_ v_(_,_) (3)

on the airfoil and with y = 0 denoting the dividing streamline that separates the upper

and lower parts of the invlscid flow in the wake, subject to the following conditions

y _ ±c¢, u _ Ue(x,t); y = 0, v = 0 (4)

with U_(z, t) given by U_ = U°_ + SUe(x, t). The eddy viscosity formulation of Cebeci and

Smith [9] is used with special emphasis on the transitional region.

1.2 Navier-Stokes Methods : The Navier -Stokes method is briefly described in this

paragraph. The full, unsteady, two-dimensional, compressible Navier-Stokes equations

were solved. In a curvilinear coordinate system _, 7/the governing equations are:

O_l OF 0(_ 10l_ OS

0-_+ _ + 0--_= R--;(-_ + _) (5)
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where _1 is the conservative variable vector q = (p, pu, pv, e) T, and _-', (_ are the nonlinear

inviscid terms, and 1_, S are the viscous terms.

The integration is performed with the finite difference factored Beam-Warming algo-

rithm [10]. The approximately factorized form of the algorithm is:

where

[* + (At/2)(#_Ai_,k + (Dimpz)_)] ×

[* + (At/2)(#,Bj_,k + (Di._pl),)]Aqj_,_ = (RHS) '_
(6)

(7)

Solutions with embedded grid which provide enhanced grid resolution at isolated flow

regions are possible. Thus, high grid resolution can be provited at critical flow regions, such

as the leading edge region, where supersonic flow conditions and possible shock formation

may occur even at moderate free str.eam subsonic speeds (M = 0.45 - 0.50) as the angle

of attack increases. The option of solving the attached flow region with the compressible

boundary-layer equations on an embedded grid is also provided. The boundary-layer

equations for a generalized coordinates system [11] are:

continuity

0--/ _,-7-, + _( )= 0 (8)

momentum

Ou o_ ov op op o J2-0 [T=_.+_._] (9)

normal momentum

energy
OH Op

POt Ot

0

0

+N{_:[-:,u

Op

o_ = o (lO)

OH OH

+ PU-o-_ + pv-ff_ =

K" Oa2" +_ K" Oa2" ]"+ _ + (-_-_)1 _[T_=+ _'_ + [-5y-y))+

+ %yv + K( Oa2_ K'Oa2"]"

(11)
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Here H = _ is the enthalpy per unit volume, and the other quantities have the
P

same definitions as before. Eqs. 8-11 are supplemented by the equation of state,

p pTc¢
u

p_ Tp_
(12)

or

T (7 - 1) [H u2 + v2
Too - a L _] (13)

Viscous or inviscid solutions can be obtained for the global grid by marching in time

from an initial condition. Steady solutions are obtained by marching in time from free

stream initial conditions until convergence to the steady-state. Similarly, unsteady flows

are computed by marching in time from a steady flow initial condition. After the global

grid solution is computed the boundary layer equations can be solved in the secondary

grid using as initial condition at the inflow the velocity profile obtained by the viscous flow

solution. Boundary conditions at the edge of the boundary layer domain are provided by

the pressure and velocity distribution of a viscous or inviscid global flow solution for the

outer region. Grid refinement is applied for the boundary-layer calculation and the values

of the flow parameters at the extra boundary points are obtained by simple interpolation

of the flow variables obtained from the viscous solution. For unsteady calculations the

boundary layer equations are solved at each time step.

2.0 RESULTS AND DISCUSSION

The unsteady flow calculations for the NACA-0012 airfoil subject to ramp-type mo-

tion, as described in detail in [12], were performed by using both interactive and Navier-

Stokes methods for a Reynolds number of 2.7 x 106 and for a non-dimensional pitch rate

k defined by k = &c/2Uoo = 0.0127. The airfoil chord was 10.16 cm, the pitch rate 1280

degrees/sec, pitching from 0 ° to 15.54 °, at a free-stream Mach number of M = 0.3. The ex-

perimental data include upper and lower surface pressure distributions for incidence angles

of 2.9, 5.8, 8.9, 11.7 and 15.5 degrees.

Figures 1 and 2 compare measured and calculated distributions of pressure coefficients

for incidence angles of 2.9, 5.8, 8.9, 11.7 and 15.5 degrees, with Figure 1 showing the

predictions of the interactive method and Figure 2 those of the Navier-Stokes method. In

both methods, the flow was assumed to be fully turbulent due to the lack of experimental

data about the location of transition, and the ramp change in the angle of attack was

assumed to be given by

2ama_ t3 + 3ama_ t2 (14)
a(t) - T3 T2
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where T is the nondimensional time required to complete the ramp motion from 0 ° to area,.

It is useful to point out that while the interactive method is based on the assumption of

incompressible flow, the Navier-Stokes method is for a compressible flow. Calculations

performed with the Navier-Stokes equations for a Mach number of 0.2 and 0.3, however,
showed no effect of compressibility on the results.

Figures 1 and 2 show that the predictions of both methods are in good agreement

with the experimental data,although the Navier-Stokes computations slightly underpredict

the suction peaks at the lower incidence. Figures 3 and 4 present a comparison between

the velocity profiles computed by both methods at two Chordwise locations corresponding

to z/c = 0.5 and z/c -- 0.9 at several angles of incidence. While there is reasonably

good agreement at low incidences, the two profiles begin to deviate significantly at higher

incidences. Figure 4e shows, however, that both procedures predict the onset of flow

reversal at a = 15.5 ° for z/c = 0.9. Unfortunately, there is no experimental data available

to verify this prediction and to assess the accuracy of the two methods.

3.0 CONCLUSIONS

Two methods are described and applied to study the effects of low Reynolds number

and flow unsteadiness on blade boundary layers. The first is based on an interactive

boundary layer scheme in which the inviscid flow is computed by a panel method and

the boundary layer flow by an inverse method that makes use of the Hilbert integral to

couple the solutions of the inviscid and viscous flow equations. The second method is based

on the solution of the compressible Navier-Stokes equations which employs an embedded

grid technique for accurate boundary layer calculations with small computational cost.

Calculated results obtained with both methods for a NACA-0012 airfoil subject to a

ramp type motion at relatively high Reynolds number also indicate good agreement with

experimental data. These results suggest that unsteady blade boundary layers can be

computed accurately with either method provided the location of transition is computed

interactively with the e'_-method and the transitional region is modelled properly. Future

work will be directed at the systematic study of the effect of Reynolds number, transition

modeling, reduced frequency and the effect of the airfoil leading edge geometry. In addition

upwinding and TVD schemes will be used to enable accurate capturing of possible shock
formation at the leading edge.
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NASA Ames Research Center.

181



|

References

1 Cebeci, T., Clark, R. W., Chang, K. C., Halsey, N. D., and Lee, K., "Airfoils with

Separation and the Resulting Wakes_" J. Fluid Mech., No. 163, pp. 323-347, 1986.

2 Ekaterinaris, J. A., "Compressible Studies on Dynamic Stall," AIAA Paper 89-0024,

27th Aerospace Sciences Meeting, Reno NV, Jan. 1989.

3 Cebeci, T., "Essential Ingredients of a Method for Low Reynolds Number Airfoils,"

To be published in the AIAA journal 1989.

4 Veldman, A. E. P., "New Quasi-Simultaneous Method to Calculate Interactively

Boundary Layers," AIAA Journal,, No. 19, 1981, p. 769.

5 Teng, N. H., "The Development of a Computer Code (U2DIIF) for the Numerical

Solution of Unsteady, Inviscid and Incompressible Flow over an Airfoil," M.S. Thesis,

Naval Postgraduate School, Montery CA, 1987.

6 Hess, J. L., and Smith, A. M. O., "Calculation of Potential Flow about Arbitrary

Bodies," Progress in Aeronautical Sciences, Pergamon Press, Oxford, Vol. 8, 1966,

pp 1-138.

7 Basu, B. C., and Hancock, G. J. "The Unsteady Motion of a Two-Dimensional Airfoil

in Incompressible Inviscid Flow," Journal of Fluid Mech., Vol. 87, 1987, pp. 157-168.

s Jang , H. M., "A Viscous-Inviscid Interactive Method for Unsteady Flow," Ph.D.

Thesis, University of Michigan, Ann Arbor, Michigan 1989.

9 Cebeci, T, and Smith, A. M. O., "Analysis of Turbulent Boundary Layers," Academic

Press , New York, 1974.

10 Beam, R. M. and Warming, R. F., "An Implicit Factored Scheme for the Compressible

Navier-Stokes Equations," AIAA Journal, Vol. 16, No. 4, April 1978, pp. 393-402.

11 Steger, J. L, VanDalsem, W. R., Panaras, A. G., and Rao, K. V., "A Formulation

for the Boundary-Layer Equations In General Coordinates," NASA Technical Mem-

orandum 100079, June 1988.

12 Landon, R. H., "NACA 0012 Oscillatory and Transient Pitching," AGARD Report

No. 702, 1981.

182



Figure Captions

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Pressure Coefficient at a = 2.9°,5.8°,8.9°,11.7°,15.5° predicted by the viscous-

inviscid interaction method. (Re = 2.7 x 108,k = 0.0127)

Pressure Coefficient at a = 2.9 °, 5.8 °, 8.9 °, 11.7 °, 15.5 ° predicted by the Navier-Stokes

solution. (Re = 2.7 × 108, k = 0.0127)

Comparison of the boundary-layer profiles computed with both methods, at a =

2.9°,5.8°,8.9°,11.7°,15.5° for the 50% chord. (Re = 2.7 x 108,k = 0.0127)

Comparison of the boundary-layer profiles computed with both methods, at a =

2.9 °, 5.8 °, 8.9 °, 11.7 °, 15.5 ° for the 90% chord. (Re = 2.7 x 108, k = 0.0127)
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